
DisOrder Playlist Design
DisOrder Playlist Design

Introduction
Playlist Concepts
New Commands For Managing Playlists

playlist-get
playlist-set
playlists
playlist-delete
playlist-set-share
playlist-get-share
playlist-lock
playlist-unlock

Event Log
playlist_created
playlist_deleted
playlist_modified

Database
Command-Line Client
Web Interface
Disobedience

Original Outline
Menu
Playlist window
Playlist Mutation And Locks

Introduction

Users should be able to construct lists of tracks which can then be queued as a unit.

It is convenient for these lists to be kept on the server: it can the allow shared access to playlists and allow users
to access their playlists from multiple locations.

Playlist Concepts

All playlist commands require the play right.

Playlist names take the form [USER.]PLAYLIST, with USER being the owning user and PLAYLIST the name of
the playlist (which must be alphanumeric and nonempty).

Playlists can be public, private or shared.
a public playlist can be read by anyone, but only modified by its owner.
a private playlist can only be read or modified by its owner.
a shared playlist can be read or modified by anyone.

Playlists with no owner are always shared.

The server manages playlists but does not have a command to play them. Clients should use playlist-get
and then play. The server is responsible for maintaining shared state, not for actually processing it.

For the benefit of clients, the event log will get notifications of any playlists readable by their user.



New Commands For Managing Playlists

playlist-get

playlist-get NAME

Returns the contents of the playlist in a body, one track to a line, or 555 if the playlist does not exist.

playlist-set

playlist-set NAME
TRACK
TRACK...
.

Sets the contents of a playlist. The request body should have one track per line. If the playlist did not already exist
it is created as a private playlist (if it has an owner) or a shared one (if it does not).

The tracks need not actually exist.

Playlists can only be modified if the lock on them is held (see below). This applies even to non-shared playlists.

NB. This is the first example of a command that takes a body. Previously only responses had bodies.

playlists

playlists

Lists all playlists readable or modifiable by the calling user. (So private playlists belonging to other users are not
returned.) There is no ordering guarantee.

playlist-delete

playlist-delete NAME

Deletes a playlist. The caller must be able to modify it. There is no way to recover playlists; it assumed that the
user community is internally coöperative.

playlist-set-share

playlist-set-share NAME STATUS

Sets the playlist to public, private or shared.

playlist-get-share

playlist-get-share NAME

Returns public, private or shared.

playlist-lock

playlist-lock NAME

Locks a playlist. Other users won't be able to edit the playlist while it is locked. Locks belong to connections, and



are lost upon disconnection. A given connection may only hold one lock at a time and should not hold the lock
any longer than necessary.

If the playlist is already locked then an error is immediately returned. The client should either give up or wait a
little while and try again.

playlist-unlock

playlist-unlock

Unlocks a locked playlist.

Event Log

TODO some of these messages are described as only being sent to the playlist owner. The infrastructure to
support this doesn't exist yet so this restriction might be left out. This does expose playlist names where they
shouldn't be but this isn't considered unacceptable initially.

The following event log messages will be added:

playlist_created

playlist_created NAME STATUS

Only sent for public or shared playlists and to the owner.

playlist_deleted

playlist_deleted NAME

Only sent for public or shared playlists and to the owner.

playlist_modified

playlist_modified NAME STATUS

Sent for public or shared playlists, and to the owner, and when a playlist changes state. (For instance if a public
playlist goes private this message will still be sent.)

Database

We'll have a single database playlists.db. This will be a hash, with the keys being playlist names.

Values will be key-value pairs with the following known keys:
sharing - should be public, private or shared.
count - the total number of tracks
0, 1, 2, ... - the first, second, third etc track

In principle there might be numbered keys beyond count; these will be ignored.

disorder-dump will save and restore the contents.

Command-Line Client



Most of this is obvious and doesn't need designing. When setting a playlist's contents, the new contents will be
read from stdin terminated either by "." or EOF, or (via an option) from a named file. For playlist-set the lock
will be automatically taken and the locking commands won't be directly available.

No dot-unstuffing is done as all valid track names start "/" anyway.

Web Interface

Playlists won't be implemented in the web interface at least in the first release.

Disobedience

Original Outline

The obvious approach here is to re-use the main queue display, with its drag+drop support.

The choose/recent/new popup menus will gain a new submenu allowing selected tracks to be added to any of the
playlists modifiable by this user. We'll cache the set of playlists and update it from playlist_ event log
messages, so there need be no additional delay.

We'll have a new "Playlists" main-menu item with an option to create a playlist and an option for each known
playlist. This will bring up the edit playlist window for that playlist, which will contain play and delete buttons as
well as the ability to modify it.

Menu

The Edit menu will have a new Edit Playlists option which will bring up the playlists window. More on this below.

The Control menu will have an Activate Playlists submenu with all playlists that the user can read. Select one
will just copy that playlist's tracks to the queue.

Playlist window

This will consists of two halves.

The left hand side will be a list of all playlists, with add and remove buttons below. The right hand side will be a
queuelike in which the current playlist can be edited. Note that it's necessary for one track to be able to appear
more than once in a playlist (suppose your playlist is Carmina Burana and you only have one copy of O Fortuna).

Dragging from the list of playlists will allow all the tracks in it to be dragged into a point in the queue. Only one
playlist at a time will be draggable this way.

Selecting a playlist will make it the current playlist and will display it in the right hand panel.

Dragging tracks form the choose tab (or elsewhere) into a playlist will insert them into the playlist, if possible at
the drop point. This is the only supported way of modifying existing playlists.

Dragging tracks from the playlist into the queue will insert those tracks in the queue at the drop location.

Right clicking over the playlist will bring up a menu with the following options:
Track properties
Select all tracks
Deselect all tracks
Remove track form playlist
Play track



Play whole playlist

Pressing the 'add' button will pop up a window with a text entry field and a group of radio buttons allowing choice
between public, private and shared status for the new playlist. The OK button will be grayed out unless the new
name and status is acceptable. The new playlist will be empty and will be selected. (Of course there will be a
Cancel button too.)

Pressing the 'delete' button will pop up a window asking if the user is sure. Playlist deletion is irrevocable (which
is arguably a bug but not one that is likely to be fixed in this version).

Playlist Mutation And Locks

The goal is to avoid mutations being silently lost. If a mutation fails because the playlist changed too much for it to
apply then that's OK as long as the user sees an error message. Better is for the mutation to happen but (for
instance) for tracks to end up in the wrong place - they can then be rearranged to somewhere more sensible.

The algorithm for removing selected tracks is:
acquire the lock1.
refetch the playlist2.
remove the tracks3.
store the playlist4.
update the list store5.
release the lock6.

Similarly to insert tracks into a playlist:
acquire the lock1.
refetch the playlist2.
insert the tracks3.
store the playlist4.
update the list store5.
release the lock6.

Locks are never held for long.

Testing this with dueling copies of Disobedience will be a nuisance!

This topic: Anjou > TWikiUsers > RichardKettlewell > DisorderToDoList > DisorderPlaylists
History: r10 - 18 Nov 2009 - 00:06:11 - RichardKettlewell

Copyright © 2004 by the contributing authors. Send feedback.


