
DisOrder Uniform Audio

Problem

DisOrder has supports three audio backends from two programs, plus network play. There is considerable model
mismatch and duplicated code.

Solution

Define a single audio interface and use that.

Requirements

Support OSS, ALSA and Core Audio; and maybe others later
Support RTP network play; and maybe other network sound protocols later.
Select at runtime, so that Linux binaries are independent of the chosen sound API
Per-API configuration, e.g.:

Device name
Source address and port, target address and port
Compression scheme

Interface

Global:
List APIs

For each API:
List devices

Maybe
Open device

For each platform there's a default interface (preferably a physical one)
For physical interfaces there's always a default device

Set device configuration
Non-generic
e.g. network parameters

Start
Supply a callback to get sample data; see below

Activate
Starts calling callback from a background thread

Deactivate
Stops calling callback
If callback is blocking, so might this

Stop
Implicitly deactivates

Get/set volume

Start/stop are potentially expensive setup and teardown. Activate and deactivate are supposed to be
(comparatively) cheap.

The API gets to call a user function to supply more audio; something like:

typedef int ua_get_audio_data_fn(int16_t *buffer,

 int max_samples,
 int latency,
 void *userdata);

Here:
buffer is the buffer to fill
max_samples is the buffer size
latency is the number of milliseconds until this data will play, or -1 if this is unknown/unknowable
userdata is an opaque pointer

The return value is the number of samples actually supplied.

TODO what are you supposed to do if no data is currently available?

TODO is this allowed to be 0?

Implementations

OSS and ALSA

These are almost the same and probably share much of their code.

Start will create a background thread which, while activated, sits in a tight loop awaiting audio data and playing
it. Activation, deactivation and stopping are managed via flags which are checked after each call plus a condition
variable to allow asynchronous notification.

Core Audio

A straightforward translation of the Core Audio interface.

RTP Play

As for OSS/ALSA we have a background thread. However it will deliberately wait between callbacks if it's
significantly ahead of itself. This implies maintaining the relationship between the current time and the current
sample count.

We could do a FLAC compress step between getting audio data and transmitting it, looking ahead.

-- RichardKettlewell - 22 Feb 2009

This topic: Anjou > TWikiUsers > RichardKettlewell > DisorderToDoList > DisorderUniformAudio
History: r3 - 23 Feb 2009 - 22:22:17 - RichardKettlewell

Copyright © 2004 by the contributing authors. Send feedback.

