The Question

Jed asked:
For integer $x>0$, let $a_{x}>1$ be the least integer such that $\left\lfloor\frac{x}{a_{x}}\right\rfloor=\left\lfloor\frac{x}{a_{x}-1}\right\rfloor$.

Finding a Lower Bound for a_{x}

Dispending with minimality for a moment, a necessary condition on the value of a_{x} is:

$$
\begin{gathered}
\left\lfloor\frac{x}{a_{x}}\right\rfloor=\left\lfloor\frac{x}{a_{x}-1}\right\rfloor \\
\Longrightarrow \frac{x}{a_{x}-1}-\frac{x}{a_{x}}<1 \\
\Longleftrightarrow \frac{x}{a_{x}\left(a_{x}-1\right)}<1 \\
\Longleftrightarrow a_{x}\left(a_{x}-1\right)>x \\
\Longleftrightarrow(m+0.5)(m-0.5)>x\left(\text { where } m=a_{x}-0.5\right) \\
\Longleftrightarrow m^{2}-0.25>x \\
\Longleftrightarrow m^{2}>x+0.25 \\
\Longleftrightarrow m>\sqrt{x+0.25} \\
\Longleftrightarrow a_{x}>\sqrt{x+0.25}+0.5
\end{gathered}
$$

So start your search here (or perhaps at some smaller value that's more efficient to calculate in your setting).

